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Continuum field theories for the Eden and DLA models are formulated, and 
they are shown to be related to the reggeon field theories with local and non- 
local interactions, respectively. 
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1. I N T R O D U C T I O N  

Kinetic growth processes have at tracted much interest recently. Notab ly  
the diffusion limited aggregat ion model  (j) (DLA)  and the Eden model. (2) In 
a broader  sense these processes can be found in studies of biological pat- 
tern formations,  (3) chemical reactions, (4) epidemic process with 
immunizat ion,  (5/ solidification instabilities, (6~ directed percolation, (7) and 
automata ,  (8) just to ment ion a few of the general examples of these growth 
processes which are Markov ian  (or quas i -Markovian)  and irreversible. In 
this paper we will concentrate  mainly on the Eden model  and a section on 
the DLA.  The Eden model  describes a growth  process in which when a 
seed is int roduced it grows by creating new particles in its ne ighborhood.  
D L A  is different f rom the Eden model  in that  a new particle can be created 
o n l y  by captur ing a diffusing particle which is performing r andom walk in 
the ne ighborhood  of the growing objects. Most  recent works are based on 
numerical simulations and mean  field type equations,  with the exception 
that the exact solution for the Eden model  with large dimensionali ty has 
been found. (9) 
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Following a well-established tradition (see Ref. 5 and references 
therein) in this paper we would like to give a field theory formulation for 
the above two problems, which can only be an approximation to the dis- 
crete model. However, this approximation is expected to be good when the 
scale of interest is large. The advantage of having such a field formulation 
is clear: it would serve as the starting point for the mean field 
approximation and take into account systematically the fluctuations. One 
might also be able to develop some appropriate renormalization techni- 
ques. 

Reggeon field theory (RFT) was originally developed for analyzing 
high-energy scattering amplitudes (for a review cf. Ref. 10). It was realized 
some years ago that RFT actually describes Markovian process, ~11) and it 
was also discovered that directed percolation and an epidemic process with 
immunization are related to RFT. (5-7) 

In Section 2 we give a heuristic derivation of a RFT-type theory for 
the Eden model; in Section 3 we study the mean field equations and their 
stabilities, in Section 4 we give a similar analysis for DLA, and many open 
questions are briefly discussed in Section 5. In principle we could also 
argue that the Eden model and directed percolation are related (directed 
percolation may be interpreted as an epidemic problem (7)) and use the 
established relations between RFT and directed percolation, however we 
think that it is more instructive to present a self-contained derivation. 

2. FIELD T H E O R E T I C A L  F O R M U L A T I O N  FOR THE EDEN 
M O D E L  

The Eden growing process is the simplest, so we will start with the 
Eden model. The Eden model can be briefly described as follows. We 
introduce a seed particle at the origin of the d-dimensional Euclidean space 
at time zero, and allow this seed particle to grow by creating new particles 
at its empty neighbors in the next time step, with the total probability nor- 
malized to one. This process will continue as the time t increases. At t = n 
we have a whole ensemble of clusters of n particles with various weights. It 
is possible to perform an exact counting of these clusters in infinite dimen- 
sions as well as to compute the first lid correction. (9~ However in finite 
dimensions things are more complicated and we are thus motivated to 
develop a kind of field theory to describe the Eden model, hoping to shed 
more light on this model, in a restrictive sense, and on the kinetic growth 
processes in a broader sense. Later we shall see that the field formulation 
which is developed below happens to be the well-studied reggeon field 
theory in high-energy physics. 
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We define a series order parameters for the Eden model: 

pl(x;n) 

p2(X1, x2;n) 

P3(Xl, X2, X3; n) 

p~(xl, x2,..., xt; n) (1) 

They are interpreted as the probability of finding a particle at x at time 
step n, the joint probability of finding particles at xl and x 2 at time step n, 
and so on. 

Generally speaking, to each cluster C of n particles we associate a den- 
sity function p(x) which is equal to the number of particles at the point x. 
[In the Eden model p(x)= 0 or 1, but it is convenient to consider also 
more complicated models.] The precise definition of the Pt is 

Pl(X; n ) =  (p (X) )  n 

p2(x,, x2; n)= (p ( x , )  p(x2) ) .  

where the average is done on all the clusters of n-particles generated 
according to the appropriate dynamical law. Our aim is to write down the 
equations for the p's for the stochastic processes which are similar to the 
Eden model or to the DLA model. All the main ingredients of the original 
model should be preserved in order not to change the universality class. 

The main characteristics of the Eden model are diffusion and self- 
inhibition. Let us study a simple model with only diffusion, i.e., a site may 
become occupied only if a nearby site is occupied. Since no inhibition is 
present, multiple occupancy is permitted. In the simplest version of the 
model the probability of adding a new particle is proportional to the 
occupancy of the nearby sites. In this case the equation for p i is rather sim- 
ple: 

1 ~ [Pl(x+fil, n)+pl(x--fil, n)] p~(x, n + l)  - pl(x, n) = ~ n  
u=l 

(2) 

This equation expresses the fact that the increase in probability of finding a 
particle at x is due to occupancy of its neighbors at the previous time step. 
Since it is assumed to be an n-particle object, and since every particle can 
grow, we normalize the increase by a factor 1/2dn. Later on we shall see 
that n itself should be renormalized. 



4 Parisi and Zhang 

It may be convenient to write Eq. (2) in the continuum notation. For 
this purpose we define t = l n ( n )  and then Eq. (2) becomes 

tS~(x; t) = c~Ap~(x; t) + pdx; t) (3) 

where e =  1/2d, A being the lattice Laplacian. We see that if initially 
p~(x, 0 ) = 0  then p~(x, t) will remain zero forever. We have to add a seed 
particle at the beginning, and Eq. (3) then becomes 

p l ( X ;  I )  = o~Apl(X; ~) -[- jOl(X; t) -~- J(~(t) 6(x)  (4) 

where J is the strength of the source (later on we shall put it to be one or 
otherwise specified). If we approximate the lattice Laplacian with the con- 
tinuum one, the solution of Eq. (4) is well known: 

1 ( x 2 )  
pl(x; t ) ~ e x p  t - ~ - ~  

The diverging factor reflects the ever-growing fact that 

(5) 

n = f dxpl(x; t) = exp(t) (6) 

(as it should be) and that 

) = ~ dXpl(x; t) x 2 ~ t = ln(n) ( x  2 
J 

(7) 

We recover in this way the results for the infinite dimensional Eden model 
where self-inhibition is not relevant. 

We must be slightly more careful in performing the continuum limit: 
Eq. (4) has been written in lattice spacing units and the coefficients of Apl 
and P l are fixed and cannot be varied. Indeed, after the appropriate 
redefinitions of scales Eq. (4) becomes 

2d 
t~l(x; t) = Apl(fl; t) + ~-~ pl(x; t) + J'b(t) b(x) (8) 

which clearly has problems with the limit a --* 0. If we generalize the model 
by assuming that at each step in time a particle may be taken out with a 
probability g, and a particle may be added with the same probability as in 
the previous example, Eq. (8)becomes 

pl(x; t)= Ap~(x; t ) + ~ - p l ( x ;  t)+ J'6(t) 6(x) (9) 
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The continuum limit in (9) can be reached now by sending a to zero and g 
to 2d simultaneously. Therefore the continuum limit may be reached only 
by introducing a carefully balanced process of "birth" and "death" of par- 
ticles. We note that although the relation among t and n is not so simple as 
before the relation ( x  2) ~_ln(n) still holds. In other words, we stay in the 
same unversality class as far as the shape of clusters at large time is concer- 
ned. We hope that similar modifications in more complex cases will not 
change the universality class. 

If we want to develop something similar to the Eden model we need to 
introduce a mechanism of inhibition. The simplest such mechanism is to let 
the probability of adding a particle at the point x be given by 
Y'.~[p(x + f i ) -  gp(x)] .  (A negative probability for adding is interpreted as 
a probability for removing.) With this hypothesis we propose the following 
equation: 

pl(x; t) = cdpl (x;  t) + pl(x; t) -- g2p2(x, x, t) + J6{t) cS(x) 

The above equation is actually a truncated one; it might have well included 
p3(x, x, x; t) and so on. Here we stick to the simplest assumption that the 
inhibition is due only to two-body interactions. To have a complete set of 
equations for P2, p 3 , ' " w e  suggest that the following set of equations 
approximately describes the Eden model: 

t~t(x; t) = ccAp,(x; t) + p~ (x; t) - gZp 2(x, x; t) + 6(t) ~(x) ( lOa) 

Pz(Xl, x2; t)=c~(A~ +A2) pz(X~, x2; t ) + 2 p 2 ( x j ,  x2; t) 

-- g2[p3(xl ,  Xl, x2; t ) + p 3 ( x l ,  x2, x2; t)] 

+ 3(x~ - x2)[p t (x l  ; t) + p~(x2; t)]  (10b) 

where A~ and A 2 are the Laplacians at x~ and x2, respectively, and so on, 
this is an infinite set of equations. Note that p2(xt,  x2; t), p3(x~, x2, x3; t) 
and so on are symmetric functions, and note that in Eq. (10b) the source 
term is due only to the presence of pl(x;  t). By definition, the functions 
/)2,/)3 and so on can be decomposed into connected parts and factorized 
parts. For  example, 

p2(x l ,  X2; t ) = p l ( x l ;  t) Pi(X2; t) + p'2(x~, x~; t) ( l l a )  

p3(x , ,  x~, x3;  t) = p~(x~ ; t) p~(x2; t) p~(x3; t) 

+ P~(xl; t) p~(x2,x3) 

-{- pl(X2) P~(Xl, X3) -~- pl(X3) P~(XI, X2) 

+ P;(Xl, x2, x3) ( l l b )  

The theory described by Eq. (10) is not deterministic but stochastic. 
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Now we turn our attention to a reggeon field theory. The action is 

and 

s =  f dxdt V~ +a,~ + ~V~ +V~ - ~+~ - ig~+(r + + ~) ~3 

Z = f D ~ D ~  + e -  s 

(12) 

We make an identification between the two theories as follows: 

1 
p,(xl,  x2,..., x,; t ) = ~  <r t) r t). . .  r t) r 0)) 

tlg~ 
(13) 

Here ( ) denotes the average using Eq. (12). The right-handside of 
Eq. (13) means that when a seed particle is introduced at (0, 0) we find 
particles simultaneously at x~, x2,..., xn at time t. It is illustrated by writing 
down the Feynman diagrams. In configuration space we have the following 
diagrams for P l , P 2 ,  and p3(see Fig. 1). The intermediate coordinates 
x', t',.., must be integrated over. In Fig. 1 only tree diagrams are drawn, 
and diagrams dressed with all possible loops should be added to them, just 
as in usual perturbation theory. 

We are left to establish the correspondence in Eq. (13). We could 
demonstrate it via a perturbation expansion, as we were originally led to it. 
However, here we will show it using the formal Dyson-Schwinger equation 
approach, which is heuristic but more compact. Let us consider the follow- 
ing equation: 

6(x, t )~+(0,0)e  s (14) 0 = ~ _ D(~DO + 
J ~(~ + 

pl(x;t) P2(Xl,X2;tl P3(Xl,X2,X3, t) 

(x,t) 

(o,o~ 

(xl,tl (x2,t) (xl,t) (x2,f) (x3,t) 

Fig. l. Tree diagrams for the density functions Pl, P2, and P3. 
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where S is the action given by Eq. (12). This is zero because it is a total 
functional derivative. Performing the functional derivative we arrive at the 
equation 

a,<~(x, t) ~+(0, 0)> = c~J <~(x, t) ~+(0, 0)> + <~(x, t) ~+(0, 0)> 

+ 6(x) 6(t)+ig<O2(x, t) ~b+(0, 0)> (15) 

With the help of Eq. (13) the reader will recognize this as Eq. (10a). Note 
that we have set <~b(x, t)O+(x, t)~b+(0, 0)> to zero, as can be explicitly 
checked. 

For Eq. (10b) we can consider the following equation: 

0 = f D ~ D ~ b  + 8~b+(xi,t)q~+(0,0)~b(x2, t)-~6q~+(x~,t) 

x ~b+(0,0)~b(xl, t ) le  s (16) 

carrying out the functional derivatives we get the equation 

at<~(Xl, t) ~(x~, 0 ~ + (0, 0)> : ~(J, + J2)<~(xl, t) ~(x~, t)~ + (0, 0)> 

+ 2<~b(Xl, t) ~b(x2, t) ~b +(0, 0)> 

+ ig(<(b(x 2, t) 02(xl, t) 0+(0, 0)> 

+ <~(x~, t)O~(x2, t)~+(0, 0)>) (17) 

where we have used the fact that <~b(x, t)> = (~b+(x, t)> = 0  (we shall dis- 
cuss the case of the nontrivial vacuum in Section 3) and we have set 
(~b+(x, t).-.~b+(0, 0)> to zero corresponding the fact only one seed was 
introduced at (0, 0). A physically motivated boundary condition like the 
tast piece of Eq. (10b) has to be added before one can realize that Eqs. (17) 
and (10b) are actually equivalent with the help of Eq. (13). 

The Dyson-Schwinger equation approach can be carried on and on. It 
provides the formal evidence that the theory described by the infinite set of 
equations Eq. (10) can be formulated by RFT equations [(12), (13)]. As 
we have discussed we can modify the coefficient of ~b+~b by adding a 
probability for removing a particle. 

3. M E A N  FIELD S O L U T I O N  A N D  ITS I N S T A B I L I T I E S  

In this section we discuss the mean field approximation to the theory 
in Eq. (10). It may also be thought of as a classical approximation when 
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fluctuations are not important.  We consider Eq. (10a), in the present case 

we can take P2~P~ 

/ ) l (X;  t )  = ~ZApl(x; l) +/Azpl(X; l) -- g2p2(x; t) + (~(X) (~(X) ( 1 8 )  

where an arbitrary mass # is introduced to remind us of the correct dimen- 
sionality. Initially we set p l(x, t ) =  0 everywhere which corresponds to the 
vacuum. However we see this vacuum is unstable against any perturbation, 
such as putting a seed at (0, 0). The region perturbed by the external 
source soon reaches a stable value P l = #2/g2, and perturbations (external 
or internal) around this value are stable in the sense that they disappear 
with increasing time. We present the numerical solutions for the one- 
dimensional and two-dimensional cases in Fig. 2, where one can see the 

b 

Fig. 2. Numerical solutions of the mean field equation Eq. (18): (a) one-dimensional kink 
moving at a constant velocity; (b) two-dimensional kink expanding at almost constant 
velocity, we stop plotting the larger kink to show the profile. 
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time evolution of the solution to Eq. (18). The solutions appear to move 
with a constant velocity and an invariant moving kink front. The regions 
which have reached the stable value #~/g2 can be interpreted as where 
growth has taken place, and they have unity particle density. 

Regretably it is not possible to solve analytically the nonlinear 
equation Eq. (18) even for the one-dimensional case. However, we may 
determine the moving kink velocity by various methods. One which is par- 
ticularly illustrative was introduced by Dee and Langer (~2) for a similar 
case. Let us concentrate on the one-dimensional case. From Fig. 2 we can 
infer that p~(x, t) can be written 

p~(x, z) = f ( x -  or) (19) 

Equation (18) becomes for some finite time 

aft' + off + #2f _ g2f2 = 0 (20) 

There is a mechanical analog to this quation, in w h i c h f m a y  be interpreted 
as the position of the particle and x as time. Equation (20) then describes 
the motion of an anharmonic damped oscillator in a potential 

2 

- V=l-#2f22 - 3  f3 (21) 

which is shown in Fig. 3. The particle initially stays on top of the hill. 
Negative f would mean negative particle density in the original problem 

Fig. 3. The potential of a mechanical analogy. 
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and is thus unphysical. Under a small positive perturbation the particle 
would run down to the bottom of the potential valley. There are various 
ways to reach the bottom and it would be sufficient to study the motion in 
the vicinity of the bottom. For this reason we can linearize Eq. (20) near 
the stable value with the replacement 

We obtain the equation 

2 

f =  g~-~+ (5 (22) 

o:6" + v6' - #26 = 0 (23) 

Note that the sign of #26 is opposite to what it "should" be since we are 
dealing only with a mechanical analog. We assume that among all possible 
ways of descending (i.e., oscillating and overdamping solutions) the particle 
tries to follow the way which needs least time. It is not difficult to find, 
using the linearized Eq. (23), that there is a critical vc=2(cq~) ~/2 which 
separates the overdamped solution from the oscillating one. This velocity is 
known to be the velocity of propagation of the front. (See Dee and 
Langer (~2) and Langer (6) and references therein.) In general the velocity of 
propagation of the kink front may be selected using the criterion of 
marginal stability. To apply it in this case we write 

p ( x ,  t)  = f ( x  - v t )  + c~(x - v t )  
(24) 

~o satisfies the differential equation 

O~(D tt - ~  V(1)  r -~- ~ 2 0 )  - -  2g2cof - ~co = 0 

It is interesting to consider the eigenvalues 2 of 

(25) 

If no 2,~ is positive and only one is zero, the solution is said to be 
marginally stable. (If all are strictly negative the solution is stable, while if 
some •m is strictly positive then the solution is unstable.) The marginal 
stability criterion states that in general the kink front velocity is selected by 
imposing that the solution is marginally stable. Here we notice that if the 
equation we consider is the mean field approximation of a stochastic 
process the marginal stability criterion comes out quite naturally. 

To be explicit let us consider our one-dimensional "Eden model": As 
the procedure of adding particles will be a stochastic one we expect that the 

~e)n = 2nco . (26) 
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velocity of propagation of the front will fluctuate once in a while. If, as it is 
natural, these fluctuations are uncorrelated in time the position of the kink 
after a large time t will be 

x ( t )  = vt + v x f ~ .  r (27) 

where r is a Gaussian random number with variance 1 and 0 mean. Let us 
compute the expectation values of p~ and P2. If 

p l = p 2 - ~ l  for x ~ v t  

p ~ = p 2 ~ 0  for x > v t  

we have that 

p l = P 2 = � 8 9  for x = v t  (28) 

In other words the corrected correlation function p ~ -  P2 is not small near 
vt! It is easy to see that P2 is substantially different from O in the region 
x - vt  = O(v  x ~ ) .  These results imply that the corrections to the mean field 
equations cannot be small. However they are not arbitrarily large as they 
increase as ~ .  

If we come back to the scheme described in the previous section we 
have that the first correction to the mean field approximation is given by 
assuming that only p~ is different from zero. Under the hypothesis that p~ is 
small we have 

/~c(Xl, X2 ) = (3 1 ~_ Z~2) pc~_ 2~2pC(xl , X2 ) 

- 2 g [ p l ( x ~ ) +  P2(x2)] p~(x1, x2) (29) 

plus source terms. 
If we look for solutions of (29) in the form 

p ~ ( x l ,  x2; t ) =  g ( v t -  x l )  g ( v t -  x2)  (30) 

we see that g satisfies the equation 

~ g  = source terms 

which cannot be solved when ~ has a zero eigenvalue. In other words the 
marginal stability condition implies that the connected correlation function 
are not small. This scenario is well known in field theory (where the zero 
mode always exists due to Galilei invariance), and the existence of a zero 
mode is necessary to restore the quantum diffusion of the solution. The 
standard way to cope with these problems is the following. While standard 



12 Parisi and Zhang 

mean field theory consists of using the saddle point method for evaluating 
the functional integral, in the presence of a zero mode the saddle point 
variety is larger and collective coordinates must be introduced. 4 In this way 
it should be possible to find the diffusion constant o of Eq. (27). To study 
this in detail goes beyond the aims of this paper. 

4. DLA M O D E L  

Much attention has been given recently to the diffusion limited 
aggregation (DLA) model proposed by Witten and Sander. (1) It has been 
studied extensively using Monte Carlo simulations (1'~3) and mean field 
equations. (~4) The original DLA model is stochastic, and one would like to 
write the DLA theory in a continuum version, at least approximately. In 
this section we attempt only a heuristic derivation. We shall see the 
resulting field theory is a modified RFT with nonlocal interactions. 

Let us consider the simplified DLA mean field equation 

~(x) = p(x)[Ap(x) + p(x)] (31a) 

Ap(x) = gZp(x)(Ap + p) (31b) 

where p(x) is the particle density of the growing cluster, p(x) is the 
probability of a random walking particle encountering the cluster, and all 
nonessential parameters have been set to 1. Note that growth can only take 
place by capturing the random walking particles. Define 

~ ( x )  = 1 - p ( x )  (32) 

which represents the penetration probability and goes to zero as x goes to 
infinity. The solution of Eq. (31b) is 

if(x) = g2 f K(x, y)[Ap(y) + p(y)]  dy (33) 

where 

lAy - g2(Ap + p)] K(x, y) = 6(x - y) 

This can be written formally as 

_ g 2  

f i ( X ) - A _  gZ(Ap + p) (Ap + p) 

4 For a review see Ref. 16. 
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or 

p(x) -  
1 

1 ---~ gZ(Ap +p) 
(34) 

The final evolution equation for p is given by 

/5(x) = lAp(y)  + p(x)]  {1 + g2 1 5 rp(x) + ~p] 

4 1 1 } 
-k g - ~ ( A p + p ) - ~ ( A p §  " "  

1 
= [S0(x)  + p(x)]  g2 

1 - -~  [p(x)+Ap] 
(35) 

The above equation can be considered as a "fractorized" mean-field 
approximation. To restore the stochastic model, we follow the same steps 
as in the Eden model, i.e., we consider the model in which we add a par- 
ticle at the point x with probability p(x)[Ap(x) + p(x)]  and we obtain the 
following equations: 

~j(x) = (A~ + 1 ) [ p ~ ( x ) - g 2  f dyG(x- y)(1 + Ay) p2(x, y) + " "1 

+ 6(t) ~(x) 

/~2(Xl, X2) = ( J  1 + A 2 + 2) {p2(xl ,  x2)- -  g2 f dy[G(x 1 _ y) + G(x2_ y ) ]  

x (1 + Ay) p3(x,, x2, y) + ""I + 6(xl--x2)[p~(xl) +pi(x2)] 
) (36) 

where 

AxG(x) = - 6 ( x )  (37) 

Equations (36), (37) correspond to a real DLA model in which we 
take into account fluctuation effects. The corresponding RFT action is 

S= f d~xdt{~o+Ea,~o-iE1 + J ~gZ(qo+cd~o)J-l(c~A~o+kl2~o)--iq)+~o]} 
(38) 
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with the identification Eq. (13). One can expand the nonlocal interaction 
term and if higher powers of ~ are not important at large distances then we 
have 

s :  f ddx dt [,+e,~ + ~V~+V, + #20+, + ig(~V,+ V , -  ~+,) 

x f ddyG(x - y)(c~A + #2) ~b(y)- ig~ + O + ~1 (39) 

We have arrived at a RFT with the nonlocal interaction. 
The original Eden model corresponds to the theory with _#2, and 

taking a smaller value of #2 corresponds to adding a probability for a par- 
ticle at a given site to disapear. In other words a particle coming from 
infinity may hit the cluster and not be adsorbed, removing a particle from 
the cluster. Hopefully as soon as #2 is negative (supercritical region) we 
should be in the same universality class as standard DLA as far as the large 
time behavior is concerned. 

In principle there is a critical value of #2 (#2) such that for #2 < #~ no 
front is created and the effect of the original seed disappears. Using renor- 
realization group arguments we could derive a scaling law for #2 near #2, 
e.g., 

~x 2 ) _  i # a _ # 2 1 , f  

7 and /3 being appropriate critical exponents. Such scaling laws are well 
known for the Ising model where 7 and/3 can be computed in powers of 
e = 4 - d, d being the space dimension. It would certainly be interesting to 
see if a similar computation can be done for the DLA model. 

5. D I S C U S S I O N  

The field theory formalism we have studied for the Eden model and 
for the DLA gives us the possibility of controlling corrections to the mean 
field theory due to fluctuations. If we introduce in both cases a parameter 
which controls the growth, these corrections will be very important near 
the critical value of this parameter. An open problem is the behavior of the 
Eden and DLA models when the cluster is growing forever. While in the 
Eden model it was possible to find a marginally stable spherically sym- 
metric solution this is not possible for the DLA. The spherically symmetric 
solution is unstable. Moreover the predictions of the spherically symmetric 
mean field theory are definitely wrong, at least at low dimensions. 
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It is not clear what role fluctuations play in the large time behavior of 
the DLA. In the first scenario, if one studies a nonspherically symmetric 
solution of the mean field equation, the large time behavior of ~ dxp(x)  and 

dxp(x)  x 2 does not depend on the initial seed (which is not spherically 
symmetric), and indeed it is the correct time dependence. This case 
corresponds to the existence of "turbulent" solutions of the DLA equations, 
and fluctuations of stochasticity do not play an important role. 

In the second scenario we may have that ~ dxp(x)  and ~ dxp(x)  x 2 are 
independent of the initial seeds with probability one (we do not consider 
the case in which these two quantities depend on the initial seed) at large 
time but they give the wrong result. Indeed if we average over all the 
possible solutions of the mean field equation by changing the seed we 
introduce a well-defined measure on the space of solutions; on the contrary 
if we take the case of fluctuations, fluctuations will weigh differently for dif- 
ferent classical trajectories and it is possible that the measure on the space 
of solutions will be quite different from the previous one. 

It is clear that careful numerical experiments may discriminate 
between the two scenarios. From the theoretical point of view the next step 
should be to apply to DLA all the weapons that have been developed in 
the study of turbulence. (17~ In particular it should be very interesting to 
develop the equivalent of the Kalmogorof laws. 
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Note Added in Proof. After completion of this paper, we learned 
that L. Peliti has developed a similar formalism for the Eden and DLA 
models. He uses Fock space techniques which are more rigorous. (18) Using 
a Hamiltonian approach we can describe the Eden process by a field theory 
which is local in space but nonlocal in time. (19) 
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